Research Opportunities for Undergraduates

We encourage you to consider getting involved in an undergraduate research project, particularly during junior or senior year. Most Notre Dame Electrical Engineering students do so for at least one semester. In addition to EE Elective credit, a research experience offers you:

  • Improved perspective on research and graduate school
  • Exposure to new technical experiences
  • Teamworking skills
  • Improved resume
  • Interesting experience to talk about at job interviews
  • Better acquaintance with faculty, which is useful for future job references

This page lists research opportunities available to undergraduates. There is great variety in the work involved, the number of credit hours available, and the background knowledge required. Some projects are available for pay rather than academic credit.

If you see a project that interests you, contact Prof. Robert Stevenson, Director of Undergraduate Studies, to learn more, or contact the listed professor directly.

Undergraduate Research Guidelines

  1. Student must be in good academic standing to register for Undergraduate Research. First Year and Sophomore students should register for EE 28499 credit. Juniors and Seniors should register for EE 48499 credit.
  2. Undergrad research has a per-semester minimum of 1 credit hour. A maximum of 3 hours of EE28499 and a maximum of 6 hours of EE48499 may be applied towards EE degree requirements.
  3. For every credit – 3 hours of research must apply, i.e. 3 credits = 9 hours weekly research.
  4. Undergraduate research may be carried out in return for academic credit (EE 48499) or for financial compensation as a part-time job, but not both. Students carrying out research as a part-time job during the summer should still sign up for 0 credits of EE 48499 / EE 28499.
  5. Student must submit a written report summarizing the research and give an oral presentation concerning the project to at least 2 faculty members, one of whom must be the EE 48499 / EE 28499 advisor.
  6. Undergraduate Research may substitute for Senior Design under the following conditions: The student must a) find a professor of Electrical Engineering willing to advise a project for two full semesters; b) register for at least 3 credits of UR in each of the two semesters; c) keep a formal research notebook and have it approved by the advisor and a second faculty member at the end of each semester. The project must be approved by the Electrical Engineering Undergraduate Committee to determine its rigor and suitability as research and design experienced. Finally, the student must satisfy all of the rules of UR as stipulated above. No student making this substitution may apply UG research credit to any other graduation requirement.
  7. Grades are based on what was accomplished and the effort put forth by the student.

Antsaklis Group

Contact Prof. Panos Antsaklis
205H Cushing, 1-5792

Networked Embedded Control Systems

Advances in sensor, actuator and microprocessor technology (MEMS and nanotechnology) have enabled distributed implementation of sensor and control actions over sensor/actuator networks. Such networks may consist of a large number of embedded processors typically of limited processing power, which should perform well under severe resource constraints (e.g. limited battery life) and under unreliable and limited communication conditions (e.g. wireless ad-hoc networks) over wide geographic areas and for long periods of time. These units must coordinate their actions in order to accomplish desired goals, such as controlling the orientation of a group of micro communication satellites or the output of a power plant. In order to build successful networked control systems we need to address novel questions and issues that lie in the intersection of control, computing and communication networks and transcend the traditional problem formulations in those areas.

This research project will focus on building a wireless feedback loop for a ball and beam system and study the implications of networking on the stability and performance of the control system.

Bauer Group

Contact Prof. Peter Bauer
269 Fitzpatrick, 1-8015

Research projects are at the intersection of electric drives, autonomous vehicles, and traffic situational awareness through V2X communications. In particular, efficiency optimization in electric vehicles with the help of high levels of situational awareness is one of the main focus areas.

Bernstein Group

Contact Prof. Gary Bernstein
225 Cushing, 1-6269

Bipolar junction transistor (BJT) technology has largely been supplanted by CMOS for digital applications, although several analog applications still exist. Prof. Bernstein is developing a new technology for fabricating nanoscale bipolar transistors, a regime which is not normally associated with BJTs. This challenging project will allow interested students to work in the laboratory performing a variety of nanofabrication steps and associated measurements.

Burghoff Group

Contact Prof. David Burghoff
226B Cushing

Research in our group is focused on the development of new photonic devices and systems that use quantum phenomena to create new functionalities, particularly in the domain of sensing, computing, and communication. We also engineer new states of light and investigate the fundamental properties of many complex optical systems.

Currently, we are seeking outstanding undergraduate researchers to do research in the following areas:

Terahertz spectroscopy of nanostructures

In this project, the student will use an ultrafast laser to generate terahertz radiation, which is a unique frequency range capable of probing the structure and electronic properties of molecules. The terahertz light will then be used to measure the properties of “artificial atoms” that are designed to have particular optoelectronic properties.

Studying the coherence properties of novel sources

In this project, the student will construct an experimental apparatus that is capable of probing the optical properties of photonic sources in new ways. This will lead to the development of better lasers and better sensing systems

Other projects may also be available. Students will be able to interact with grad students and postdocs, and will be able to learn about optics, lasers, programming, and laboratory instrumentation. A dedicated student may even be able to get a publication from the work. The only prerequisites are a high-school level knowledge of optics and some experience with computer programming.

Chisum Group

Contact Prof. Jonathan Chisum
226A Cushing, 1-3915

Undergraduate research opportunities are typically available in the Microwave and Millimeter wave Circuits and Systems group. Our emphasis is in wideband and efficient circuit architectures as well as employing analog/digital co-design methods for highly linear operation. Typical applications include next generation (5G) wireless communications systems, wideband and low power spectrum sensing hardware, electrically small antennas, as well as instrumentation design. Examples of the typical circuits include highly efficient microwave power amplifiers, digitally compensated linear receivers, non-Foster’s circuits for impedance matching electrically small antennas, employing novel magnetic materials for analog signal processing (e.g., real-time, low-power fourier transforms), and near-field scanning microwave microscopy instrumentation. Interested candidates should contact Professor Chisum.

Fay Group

Contact Prof. Patrick Fay
261 Fitzpatrick, 1-5693

Undergraduate research projects are typically available for interested students in any of the research projects in Prof. Fay’s group. See High Speed Circuits and Devices for topic areas and project synopses. Interested students are encouraged to contact Prof. Fay directly (

Haenggi Group

Contact Prof. Martin Haenggi
274 Fitzpatrick, 1-6103

Our research group currently seeks 1-2 outstanding undergraduate students to join our group and contribute to our expanding research efforts in the Emerging Wireless Architectures (EWA) laboratory.

As a member of our team, you will:

  • learn about current technology and research issues in wireless networking, in particular ad hoc networks, cognitive networks, software radio networks, and sensor networks
  • develop skills and experience through a wide range of valuable research activities: from building and experimenting with radio and sensor hardware modules, to implementing sophisticated communications and signal processing software in Matlab, LabView, or C on software radio devices
  • interact regularly with graduate students and faculty, through individual and group meetings

All that is required is a solid background in signals and systems (EE30344, perhaps EE30354), eagerness to learn and to work independently and as a team.

Hall Group

Contact Prof. Douglas Hall
260 Fitzpatrick, 1-8631

Optoelectronics Laboratory

(B01 Stinson-Remick Hall)

We have developed a deep-etched ridge waveguide edge-emitting laser that uses a special oxidation process to smooth and passivate the sidewall, overcoming high scattering loss and sidewall recombination issues which have plagued their prior development. We currently have NSF Partnerships for Innovation – Technology Transfer (PFI-TT) funding to evaluate a patent-pending novel circular mode edge-emitting laser that eliminates the need for complex integrated mode converters or external optics. Longer range, an effective, viable deep-etched process for active devices also promises to enable advances in future GaAs photonic integrated circuits that require the very low bend loss we have previously demonstrated. We are currently actively evaluating both the quality of the oxide-passivated sidewall interface and the reliability of laser fabricated by this process. We are collaborating with Prof. Ken Kuno in the Department of Chemistry to perform time resolved photoluminescence (TRPL) measurements to directly assess sidewall interface recombination, a measure of interface quality, using their pulsed laser micro-photoluminescence (μPL) system, thus enabling process optimization to improve laser performance and reliability. Concurrently, we are fabricating lasers in the Notre Dame Nanofabrication Facility, collaborating with industry partners assisting with laser mirror passivation coatings and heatsinking, and performing burn-in and life testing in our custom built 10 channel laser reliability testbed.

We are looking for undergraduate researchers to assist with TRPL measurements, diode laser characterization, and laser reliability testing (including further development of the testbed).  Preferred background includes coursework in semiconductors and/or optics. Desirable skills include programming for working with a Teensy 4.1 microcontroller used for data acquisition; Python for testbed automation, and MATLAB for data processing/analysis.  Experience with semiconductor device fabrication is useful but not required.

In addition, we have an undergraduate research opportunity suitable for engineering students at all levels to aid in development of advanced holography processes, working with lasers, optics, and holographic film to fabricate high quality transmission and reflection holograms and assist in annual outreach activities at local high schools.

Howard Group

Contact Prof. Scott Howard
227 Stinson Remick, 1-2570

Photonics for Medical Imaging and Diagnostics

Undergraduate projects are available in two thrusts:

(1) New photonic devices allow for high resolution imaging and chemical interrogation at the cellular and tissue scale. These technologies aim to reduce the need of invasive surgeries and reduce the lag time between imaging and diagnosis. High speed multi-photon and long wave infrared imaging systems for medical and pharmaceutic applications are being developed.

(2) Low cost advanced imaging and diagnostic systems are being developed due to the widespread availability of low cost embedded systems and optical components. Platforms such as the OpenPCR and new low-cost portable endoscope platforms in collaboration with the NDIIF will provide researchers and clinicians in developing countries access to what is typically expensive technology. We are working on developing and providing such technology to researchers.

Huang Group

Contact Prof. Yih-Fang Huang
259 Fitzpatrick, 1-5350

Projects of current interests include integration of information technologies into energy technologies, leading to the development of smart power grids. We are seeking students that are interested in surveying issues relevant to smart grid development and working on innovative research related to distributed generation of renewable sources, reliability and security of power grid, transmission and distribution issues (T&D), demand management and response.

Laneman Group

Contact Prof. Nick Laneman
275 Fitzpatrick, 1-8034

Our group regularly seeks 2-4 outstanding undergraduate students to participate in our research and outreach efforts. As a member of our team, you will:

  • learn about hot technology and policy issues in wireless communications and gain exposure to many commercial and military applications
  • develop skills and experience through a wide range of valuable research activities, from building and testing hardware, to writing signal processing software in MALTAB or C, to designing experiments and interpreting data, to assessing economic value and developing policy positions interact regularly with graduate students, postdoctoral researchers, and faculty, through individual and group meetings, both formal and informal
  • explore service and entrepreneurial opportunities in collaboration with local organizations
  • accelerate your path to graduate research, better jobs in industry, or both

All that is required is a solid background in circuits and systems (e.g., classes such as EE20224, EE30344, and EE30354), eagerness to learn, willingness to work independently and as a team, and strong written and oral communication skills. Experience with radio and DSP hardware design, communications theory, networking, or software engineering is a plus.

Pratt Group

Contact Prof. Thomas Pratt

Research opportunities are available for undergraduate credit in the following areas:

Wireless Channel Modeling

The objective of this work will be the development of time varying statistical channel models for polarization-sensitive wireless communications systems. The work will involve Matlab-based statistical analysis of experimental data, model synthesis, and bit-error rate performance comparisons in actual channel and simulated channels.

Polarimetric Synthetic Aperture and Ground Penetrating Radar

This research activity will involve the investigation of new polarimetric remote sensing techniques for synthetic aperture radar and ground penetrating radar. Theoretical, simulation, and possibly experimental investigations will be conducted to evaluate the concepts.

Radio Frequency Coherent Sensor Development for Hydrological Monitoring

The goal of this work is to employ a wideband coherent channel receiver testbed to evaluate techniques for bistatic sensing of soil moisture. The work will involve field experimentation with sensing probes, RF collection, and signal processing with Matlab-based detection algorithms.

Radio Frequency Signal Detection Algorithms

This work will involve theoretical, simulation, and experimental investigation of detection algorithms for signals in noise and interference. Approaches to be considered include polarimetric, cyclostationary, and multi-antenna covariance-based techniques.

RF Polarization-Based Communications

The goal of this research is to consider RF polarization-based communications techniques as an overlay to existing communications schemes. The research will involve simulation and laboratory studies to support the development of these concepts.

Coding Schemes for CDMA and DSSS Systems

The goal of this research is to evaluate and develop coding schemes that exploit code set selection at the transmitter and multisymbol detection at the receiver. Work will focus on the evaluation of algorithms via simulation and also on the development of efficient simulations that leverage an NVIDIA TESLA GPU processing board in a Matlab/Simulink environment.

Undergraduates who elect to participate in this research will be required to attend a weekly meeting with Dr. Pratt, and must engage in an average of 3 hours of research each week per credit hour. A 15-page research report, an activity log (with hours recorded), and an oral presentation (and demonstration, if appropriate) are required at the conclusion of the research effort.

Seabaugh Group

Contact Prof. Alan Seabaugh
230A Cushing, 1-4473

Undergraduate research projects are available in nanoelectronics, tunnel transistors, memory, energy conversion, or in new areas. Undergraduate researchers typically work closely and in parallel with graduate students to gain appreciation of graduate research.

Snider Group

Contact Prof. Gregory Snider
275C Fitzpatrick Hall, 1-4148

There are a number of undergraduate research opportunities available in the snider group. Listed below are a couple of projects just to give a flavor of the research. Other projects are also available.

Minimum Energy for Computation

Anyone who owns a laptop knows that power dissipation and the associated heat are a problem for the microelectronics industry. As electronic devices scale down in size, they use less power (and hence energy), but is there a lower limit to the energy that must be dissipated by each device? Recent experimental measurements by our have demonstrated our ability to measure energy dissipation in the range of a few hundred yJ (1 yJ is 10-24 J) and show that no minimum limits exist. We are now beginning measurements on ultra-low power CMOS circuits.

These experiments will point the way toward practical ultra-low power circuits. The projects available include building circuits and amplifiers for ultra-low-noise energy measurements as well as the actual measurements. A student involved in these projects will gain experience in programming, fabrication, and measurement techniques.

Molecular Quantum-dot Cellular Automata

This project is investigating the use of molecules as electronic devices. Quantum-dot Cellular Automata is a computing paradigm that uses single electrons to encode information. Molecules make excellent containers for single electrons, but the challenge is to control and measure the movement of electrons within the molecule. Undergraduates involved in this experiment will work on the design of experiments and on the measurements of molecules and other devices.

Stevenson Group

Contact Prof. Robert Stevenson
275 Fitzpatrick, 1-8308

Course Structure

The course is run as individual projects (sometimes 2 people team up to work together). After 2-3 weeks of meeting as a group, students select independent projects to work on for the rest of the semester. Meetings with Dr. Stevenson are then held individually once a week for approximately 1/2 hour. Meeting topics generally center around what was accomplished during the past week and current problems or goals.
At the end of the semester the student must

  • prepare a written report (10-20 pages)
  • give a fifteen minute presentation about the project to two faculty member

Grades are based on what was accomplished and the effort put forth by the student.

Research Topics

Dr. Stevenson’s research centers around image and video processing. Any project which can contribute to this effort is acceptable. Some successful example projects which were done in the past include

  • Image Filtering
  • Video Filtering
  • Parallel Image Processing
  • Image Stabilization

Dr. Stevenson has plenty of projects which build on these examples and some which take a completely different direction. If the examples interest you, stop by to talk to him about specific projects on which you may be able to contribute to as an undergraduate researcher.